101 research outputs found

    A large-scale automated radio telemetry network for monitoring movements of terrestrial wildlife in Australia

    Get PDF
    Technologies for remotely observing animal movements have advanced rapidly in the past decade. In recent years, Australia has invested in an Integrated Marine Ocean Tracking (IMOS) system, a land ecosystem observatory (TERN), and an Australian Acoustic Observatory (A2O), but has not established movement tracking systems for individual terrestrial animals across land and along coastlines. Here, we make the case that the Motus Wildlife Tracking System, an open-source, rapidly expanding cooperative automated radio-tracking global network (Motus, https://motus.org) provides an unprecedented opportunity to build an affordable and proven infrastructure that will boost wildlife biology research and connect Australian researchers domestically and with international wildlife research. We briefly describe the system conceptually and technologically, then present the unique strengths of Motus, how Motus can complement and expand existing and emerging animal tracking systems, and how the Motus framework provides a much-needed central repository and impetus for archiving and sharing animal telemetry data. We propose ways to overcome the unique challenges posed by Australia’s ecological attributes and the size of its scientific community. Open source, inherently cooperative and flexible, Motus provides a unique opportunity to leverage individual research effort into a larger collaborative achievement, thereby expanding the scale and scope of individual projects, while maximising the outcomes of scant research and conservation funding

    Energetic and physical limitations on the breaching performance of large whales

    Get PDF
    The considerable power needed for large whales to leap out of the water may represent the single most expensive burst maneuver found in nature. However, the mechanics and energetic costs associated with the breaching behaviors of large whales remain poorly understood. In this study we deployed whale-borne tags to measure the kinematics of breaching to test the hypothesis that these spectacular aerial displays are metabolically expensive. We found that breaching whales use variable underwater trajectories, and that high-emergence breaches are faster and require more energy than predatory lunges. The most expensive breaches approach the upper limits of vertebrate muscle performance, and the energetic cost of breaching is high enough that repeated breaching events may serve as honest signaling of body condition. Furthermore, the confluence of muscle contractile properties, hydrodynamics, and the high speeds required likely impose an upper limit to the body size and effectiveness of breaching whales

    Immature gannets follow adults in commuting flocks providing a potential mechanism for social learning

    Get PDF
    Group travel is a familiar phenomenon among birds but the causes of this mode of movement are often unclear. For example, flocking flight may reduce flight costs, enhance predator avoidance or increase foraging efficiency. In addition, naive individuals may also follow older, more experienced conspecifics as a learning strategy. However, younger birds may be slower than adults so biomechanical and social effects on flock structure may be difficult to separate. Gannets are wide‐ranging (100s–1000s km) colonial seabirds that often travel in V or echelon‐shaped flocks. Tracking suggests that breeding gannets use memory to return repeatedly to prey patches 10s–100s km wide but it is unclear how these are initially discovered. Public information gained at the colony or by following conspecifics has been hypothesised to play a role, especially during early life. Here, we address two hypotheses: 1) flocking reduces flight costs and 2) young gannets follow older ones in order to locate prey. To do so, we recorded flocks of northern gannets commuting to and from a large colony and passing locations offshore and used a biomechanical model to test for age differences in flight speeds. Consistent with the aerodynamic hypothesis, returning flocks were significantly larger than departing flocks, while, consistent with the information gathering hypothesis, immatures travelled in flocks more frequently than adults and these flocks were more likely to be led by adults than expected by chance. Immatures did not systematically occupy the last position in flocks and had similar theoretical airspeeds to adults, making it unlikely that they follow, rather than lead, for biomechanical reasons. We therefore conclude that while gannets are likely to travel in flocks in part to reduce flight costs, the positions of immatures in those flocks may result in a flow of information from adults to immatures, potentially leading to social learning

    Hunting between the air and the water : the Australasian gannet (Morus serrator) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Auckland, New Zealand

    Get PDF
    Appendix 1 and 2 removed due to copyright restrictions: Machovsky Capuska, G.E., Huynen, L., Lambert, D., Raubenheimer, D. (2011), UVS is rare in seabirds, Vision Research, 51, 1333-1337 Shuckard, R., Melville, D.S., Cook, W., Machovsky Capuska, G.E. (2012), Diet of the Australasian gannet (Morus serrator) at Farewell Spit, New Zealand, Notornis, 59, 66-70Australasian gannets (Morus serrator) are the second rarest member of the seabird group Sulidae. Among the three species of gannets worldwide, they are the only species that regularly breeds in southeastern Australia and New Zealand. Like all gannets, M. serrator face considerable challenges in foraging, relying on sparsely and patchily distributed pelagic prey, which move in a 3D environment. Whereas most predators are specialise hunters in one media, gannets have to hunt within a complex air-water interface. The aim of the present thesis is to examine the hunting strategies of Australasian gannets, with particular emphasis on how these birds use both aerial and aquatic adaptations to locate and capture prey. The acquisition of information concerning food sources was analysed using GPS data loggers, field observations and high resolution video footage. I tested the hypothesis that gannets obtain information of food resources from their partners using bill fencing as referential signals analogous to the waggle dance in honeybees (Apis mellifera) (Chapter 2). Results did not support this hypothesis but suggested that Australasian gannets use a combination of strategies, probably including memory that facilitates their return to locations where prey was previously captured (Chapter 3) and local enhancement to locate active feeding sites (Chapter 2). The impact of intraspecific competition for local resources was studied between large (Cape Kidnappers, 7,300 breeding pairs) and small (Farewell Spit, 3,900 breeding pairs) colonies in New Zealand using GPS data loggers (Chapter 3). Results indicated that gannets from the larger colony invested more in foraging (greater foraging times and foraging distances). This is consistent with previous studies of other gannet species, suggesting that M. serrator experience intraspecific competition for food when living in large colonies. Pelagic prey are able to evade predation by descending to depths beyond the reach of diving birds. Among the adaptations evolved by gannets for dealing with this challenge is plunge-diving, where the bird uses gravity in the aerial phase of the hunt to gain speed and momentum for descending into the water column. I conducted a fine scaled analysis using videography of the aerial and aquatic phases of this highly specialised hunting strategy. Analysis of the aerial phase (Chapter 4) showed that the initiation of plunge dives are synchronised among members of foraging groups, suggesting a form of group-level behaviour in which gannets might benefit from the sensory experiences (prey detection) of conspecifics. The analysis also showed that gannets adapt the aerial phase of their dives in presence vs. absence of heterospecific predators. In the aquatic phase (Chapter 5), gannets perform short and shallow V-shaped dives and long and deep U-shaped dives in pursuit of pelagic fish and squid. My findings revealed that gannets adjusted their dive shape in relation to the depth of their prey rather than prey type, as previously hypothesised. Although the maximum number of prey captured per dive by the gannets was higher than previously reported, reaching up to five fish in a single U-shaped dive, the results presented herein suggest that the two dive profiles were equally profitable. To examine the role of underwater vision in prey capture, I used underwater video footage, photokeratometry and infrared video photorefraction (Chapter 6). Analysis of video footage confirmed that there are two distinct phases in the underwater component of plunge dives in Australasian gannets, an initial phase in which the bird is propelled through the water column by the momentum of the plunge (M phase) and a phase in which it is actively propelled by wing flapping (WF phase). The highest prey capture rate was observed during the WF phase, a result that suggests the use of vision in underwater prey pursuit. I therefore used photokeratometry and video photorefraction to test whether gannets are able to adapt optically in the transition from aerial to aquatic media. My measurements showed that underwater visual accommodation in the gannets was attained within 2 - 3 frames (80 - 120 ms) of submergence, a remarkably short timescale in relation to the optics of most vertebrate eyes. The preceding chapters demonstrate some highly effective behavioural and sensory capacities used by gannets in foraging. In Chapter 7 I demonstrate evidence of fatal injuries due to collision between conspecifics in plunge-diving Australasian and Cape gannets (M. capensis). The analysis also revealed a case of attempted underwater kleptoparasitism, in which a diving bird targeted a previously captured fish in the beak of another gannet. This novel observation suggests a further challenge for hunting gannets, namely to retain prey following the capture

    Habitat-specific foraging strategies in Australasian gannets

    No full text
    Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change

    Using non-systematic surveys to investigate effects of regional climate variability on Australasian gannets in the Hauraki Gulf, New Zealand

    Get PDF
    Few studies have investigated regional and natural climate variability on seabird populations using ocean reanalysis datasets (e.g. Simple Ocean Data Assimilation (SODA)) that integrate atmospheric information to supplement ocean observations and provide improved estimates of ocean conditions. Herein we use a non-systematic dataset on Australasian gannets (Morus serrator) from 2001 to 2009 to identify potential connections between Gannet Sightings Per Unit Effort (GSPUE) and climate and oceanographic variability in a region of known importance for breeding seabirds, the Hauraki Gulf (HG), New Zealand. While no statistically significant relationships between GSPUE and global climate indices were determined, there was a significant correlation between GSPUE and regional SST anomaly for HG. Also, there appears to be a strong link between global climate indices and regional climate in the HG. Further, based on cross-correlation function coefficients and lagged multiple regression models, we identified potential leading and lagging climate variables, and climate variables but with limited predictive capacity in forecasting future GSPUE. Despite significant inter-annual variability and marginally cooler SSTs since 2001, gannet sightings appear to be increasing. We hypothesize that at present underlying physical changes in the marine ecosystem may be insufficient to affect supply of preferred gannet main prey (pilchard Sardinops spp.), which tolerate a wide thermal range. Our study showcases the potential scientific value of lengthy non-systematic data streams and when designed properly (i.e., contain abundance, flock size, and spatial data), can yield useful information in climate impact studies on seabirds and other marine fauna. Such information can be invaluable for enhancing conservation measures for protected species in fiscally constrained research environments.Fil: Srinivasan, Mridula. National Marine Fisheries Service; Estados UnidosFil: Dassis, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Benn, Emily. University of Sydney; AustraliaFil: Stockin, Karen A.. Massey University; Nueva ZelandaFil: Martinez, Emmanuelle. Massey University; Nueva Zelanda. Pacific Whale Foundation; Estados UnidosFil: Machovsky Capuska, Gabriel E.. Massey University; Nueva Zelanda. University of Sydney; Australi
    corecore